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1 Motivation/Scientific Context

To model the dynamics of many geophysical flows, the Boussinesq approximation is used and thus
the flow is treated as incompressible [9]. It is important to study the effects of flows such as mantle
convection [4], the ocean [8], and the atmosphere [6], over long time periods to better constrain the
parameter space of models. These studies are being done, and are being shown to be relevant and use-
ful, but much work is to be done, particularly using adaptive schemes. Adaptive schemes will allow
resolving of moving fronts and other sharp features arising from physical properties such as phase
changes, viscosity, and thermal boundary layers, figure3. For example, in the Earth’s Mantle there is
a viscosity phase change at around 410 km and 670 km depth, and solidification/melting and composi-
tional fronts where an adaptive method is crucial to understand the dynamics. I propose to implement
a Parallel Adaptive High Order scheme to solve the Navier-Stokes equations. This code will then
be used to investigate nonlinear fluid problems with particular relevance in geophysical flows. High
order methods are inherently well suited for such problems due to their exponential convergence prop-
erties. By coupling a high order method with an adaptive mesh refinement scheme, one may achieve
the desired accuracy with the least amount of computation [7]. I propose to solve geophysical flow
equations with a fast and accurate high order adaptive scheme that holds great promise for geophysi-
cal science applications. In this prospectus, I will discuss the implementation of an parallel adaptive
spectral element method to solve the Navier Stokes equations. The primary sources of this prospectus
are [1], [2], and [3].

2 Incompressible Flows, Thermal Convection

The equations which govern the flow of an incompressible fluid, are derived from equations which
enforce the conservation of mass, the conservation of momentum, and the conservation of energy of
a fluid particle.

∂~u
∂t

+(~u·∇)~u = −1
ρ

∇p+ν∇2~u−~f (1)

ρcp(
∂
∂t

T +~u·∇T) = κ∇2T (2)

∇ ·~u = 0. (3)

Whereρ is the fluid’s density,ν = µ
ρ is the kinematic viscosity,cp is the specific heat, andκ is the

fluid’s conductivity coefficient.

2.1 Boussinesq Approximation

The Boussinesq approximation couples the fluid dynamics and temperature change using a non-
constant density, which is accounted for in the momentum conservation, but neglected in the con-
servation of mass.

ρ = ρ0(1−α(T −T0)) (4)

Whereα is the thermal expansion coefficient,T0 is a reference temperature, andρ0 = ρ(T0). In the
case of natural convection,~f is gravational acceleration−g, and the Boussinesq equations are written
as
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∂~u
∂t

+(~u·∇)~u = − 1
ρ0

∇p+ν0∇2~u+~g(1−α(T −T0)) (5)

ρ0cp(
∂
∂t

T +~u·∇T) = κ∇2T +ρ0r +Φ (6)

∇ ·~u = 0. (7)

HereΦ is the dissipation function,andρ0r is the volume source term.

3 Discretization of the Navier-Stokes Equations

3.1 Spectral Element Method

To solve the Navier-Stokes equations efficiently while maintaining a high working accuracy over long
time periods, the Spectral Element Method (SEM) will be used for the spatial discretization. Figure
(1) shows that high order methods require much less work to maintain a desired working accuracy
over long time scales as opposed to lower order methods such as Finite Differencing, or Finite Ele-
ment. This is due to the exponential convergence property of high order methods, compared to the
algebraic convergence of low order schemes. Spectral methods alone require intense global com-
munication when parallelized. However, by dividing the computational domain and creating smaller
computational elements one obtains a spectral-element method such that heavy communication is
takes place on the same processor, and lighter communication is performed between processors. High
order spectral element methods provide a scalable, accurate solution to the Navier Stokes equations.
However, this model can be improved by adding an adaptive computational grid, to allow the majority
of the work to be done in hard to compute regions, such as sharp fronts, while saving time computing
with a coarser grid on regions that are easier to compute. This will provide a method that will obtain
greater global accuracy for the amount of time spent computing [7].

Definition 1 (Algebraic Convergence)For fixed polynomial degree and increasing number of ele-
ments, un(x, t) will algebraically approach u(x, t), that is, as the number of elements are doubled, the

error is reduced by a factor of12.

Definition 2 (Exponential Convergence)For fixed number of elements and increasing polynomial
degree, un(x, t) will exponentially approach u(x, t), that is, as the Polynomial degree on each element
is doubled, the error is reduced by 2 orders of magnitude.

3.2 Spatial Discretization

The spectral element spatial discretization is based on the method of weighed residuals, in which one
obtains an integral equation to solve. The integral equation is then broken up into a summation of the
integrals over individual elements. The integral over each element is then approximated by perform-
ing Gauss-Legendre-Lobatto quadrature in the velocity terms, and Gauss-Legendre quadrature in the
pressure terms. After this is done, one obtains the following system of matrix equations

Mu̇+C(u)u = −1
ρ

DT p−νAu (8)

−Du = 0 (9)
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Figure 1: Computational Work (FLOPS) required to integrate a linear advection equation for 5 peri-
ods while maintaining a cumulative phase error ofε = 10%.[7]

WhereM is the diagonal mass matrix,A is the discrete laplacian,C(u) is the nonlinear advection
operator,DT is the discrete gradient operator, andD is the discrete divergence operator. In higher
dimensions, each of these operators can be formed as Kronecker tensor products of their 1D coun-
terparts. This results in very efficient evaluation of the operators. Namely, the Kronecker tensor
formulation reduces the order of operations fromO(nd+2) to O(nd+1) for a d-dimensional calculation
with n grid points.

3.3 Temporal Discretization

For SEM a harsh condition is placed on the time step∆t in order to satisfy the CFL condition

∆t ≤ ∆x
sup

x∈ R, t > 0
|u(x, t)|

(10)

For basis functions of degreeN− 1, ∆t ≤ 6.5
ν

π2

N4 . However, it is not necessary to integrate this en-
tire system at this small time step, since the convection term is the dominant limiting factor [5]. For
convection dominate flows, an explicit Runge-Kutta 4 scheme is used to solve the convection part
of the flow ûn−2, ûn−1, ûn. These are then used on the right hand side of the the third order back-
ward differencing scheme (BDF3) to solve the diffusion system forun+1. This splitting of the time
advancement between the convective part using RK4 and the diffusive part using a BDF scheme is
known as Operator Integration Factor Splitting (OIFS) [1]. OIFS can be written as
Start withun−2,un−1,un, solve the IVP

{
M d

dsû j(s) = −ReC(û j(s))û j(s), s∈ (0, jγ∆s]
û j(tn+1− j) = un+1− j

j
(11)

with time steps∆sj = ∆/γ where gamma is chosen such that∆s satisfies the CFL condition. Each
iteration of the RK4 scheme yields ˆun+1

1 , ûn+1
2 , ûn+1

3 respectively. After ˆun+1
1 , ûn+1

2 , ûn+1
3 are obtained,

the third order Backward differencing scheme (BDF3) is used to advance the diffusive contributions
of the system.

(
11
6∆t

M +νA)un+1
i −DT pn+1 =

M
∆t

(3ûn+1
1 − 3

2
ûn+1

2 +
1
3

ûn+1
3 ) (12)

−Dvn+1 = 0 (13)
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un−2,un−1, and un are then updated for the next RK4 solve. The choice of the BDF3 method is
attractive, because it has a stability region which includes the entire imaginary axis, which is necessary
for viscous dominated flows.

3.4 Stokes system

After discretizing the Navier Stokes equations in space and time, one is left with a coupled system of
equations of the form

[
H −DT

−D 0

](
un+1

pn+1

)
=

(
f n+1

0

)
(14)

whereH is the symmetric positive definite Helmholtz operator,D is the discrete divergence operator
andDT is the discrete gradient operator. Solving this coupled system requires a slowly converging
Uzawa algorithm. However, one can solve a decoupled system of equations that results in a solution
which is accurate of the same degree as the temporal discretization scheme. Such methods are known
as fractional step schemes. By considering the LU decomposition of the above system matrix, an
equivalent two-step procedure to solve forun+1 andpn+1 can be written as

[
H 0
−D −DQDT

](
v∗

pn+1

)
=

(
f n+1

0

)
(15)

[
I −QDT

0 I

](
vn+1

pn+1

)
=

(
v∗

pn+1

)
(16)

Wherev∗ is not divergence free, andQ ≈ H−1. H is SPD, so a preconditioned conjugate gradient
method can be used to solve forv∗. Also, whenQ is diagonal, the Poisson operatorDQDT is SPD,
and thus one may also use the preconditioned conjugate gradient method to solve forpn+1.

3.5 P-type Refinement

Adaptive schemes will allow resolving of moving fronts and other sharp features arising from physical
properties such as phase changes, viscosity, and thermal boundary layers. In order to efficiently use
a high order method, one needs to develop a criteria which states when an element should be refined,
or de-refined. For example, in 1-D if the slope of the solution on a local element is greater than some
specified value, then the polynomial degree of that element may be increased by one. This type of
analysis is performed element-wise. After checking with the refinement criteria, the solution on each
element is then interpolated to the proper degree, and then the the next time step is made. In higher
dimensions similar refinement criteria have been implemented, to allow refinement of the grid as a
heat source, moves through the domain [2]. Various other error estimators can be contrived depending
on the nature of the flow. Higher order local elements, combined with smaller local times steps could
be used to achieve proper global accuracy in difficult regions.

4 Computational Aspects

Because of the wide range of geophysical flows, one needs the code to be re-usable, scale to solve
large problems. In order to accommodate these needs, the code I am writing will be written using
object oriented design to enable it to be re-used for various physical systems. In order to solve large
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scale systems, several parallel communication routines must be written to enable the code to run on
large multi-processor systems. In this section, I detail one of the key computational aspects of the
SEM, which allows for parallelization.

4.1 Parallelization

Once the the computational domain into discretized amongst several elements, two orderings of the
nodes on the elements are constructed. A global ordering which lists all the nodes of the discretization,
and a local ordering, which lists the nodes on a given element. Based on the global ordering of each
node in the discretization, the structure of the coupled system operators are determined. However,
since the systems are quite large, iterative solvers are used, and thus, one must only apply a matrix to
a vector, and hence global system never needs to be constructed. Since the same global node, can be
stored on the boundary of two elements, one must perform a calculation to determine the contributions
from each element to the solution. Once this is done, a weighted sum, averages the contributions to
a given node from all elements, this is done for all nodes to obtain the global solution. For example,
in figure (2) the global solution at node 7 in the global ordering is obtained by adding the solution at
node 7 from element 1 and node 1 from element 2, and then dividing by 2. The name of this weighted
summation process is referred to as Direct-Stiffness-Summation (DSS). In order to parallelize the
SEM, each processor is assigned a set of elements for which it is to compute the solution. Each time
a solution on those elements is computed, a parallel DSS is called to determine the nodal values at
(non-local) element boundaries. For example if element 1 and element 2 are on separate processors,
each time a solution is computed on both of them, the solution at node 7 on processor 1 is summed
with the solution at node 1 on processor 2. The result is then divided by two and stored on both
processors as the value of the solution at that node. In order to determine the dependencies between
processors for complicated geometries, a parallel bin sort is used.

Figure 2: (Left) Global ordering and (Right) local ordering. Direct stiffness summationΣ′ is achieved
via the mapping between the local and global node ordering.

The map corresponding to figure2, would be implemented as

map(1,1:9)=(1, 2, 3, 4, 5, 6, 7, 8, 9)

map(2,1:9)=(7, 8, 9, 10, 11, 12, 13, 14,15)

Where the first subscript of map denotes the global index for a particular element. Advantages for
this method include high efficiency for large polynomial degrees, since local calculations can be
performed on each element then summed. Also by implementingΣ′ using the local to global mapping,
the operation is independent of the physical geometry of the problem, thus allowing for complicated
domains and non-conforming methods [5].
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5 Proposed Work

My proposed work is to implement the 2D Navier-Stokes equations, add the capability to compute
with an infinite Prandtl number, and implement adaptive schemes into this framework. Because of the
object oriented paradigm I implemented with Dr. Thomas Clune during the summer 2004 at NASA
Goddard, I aim to have this code become a useful adaptive spectral element framework from which
the geophysical community can use for multiple applications.

Figure 3: Infinite Pr mantle convection in rectangular geometry,Ra= 106. Temperature field is
shown. [4]
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